RHIC Status and Plans

Brief summary of RHIC RUN2001/2

Plans and goals for RUN2003

FY2001 - 02 RHIC Gold Parameters

- 55 56 bunches per ring ✓ (110 bunches per ring tested, intensity limited)
- 7.5×10^8 Au/bunch @ storage energy (intensity limited during acceleration)
- 1 × 10⁹ Au/bunch achieved @ injection ✓
- Longitudinal emittance: 0.5 eVs/nucleon/bunch (0.3-0.6 Design) ✓
- Transverse emittance at storage: 15 π µm (norm, 95%) \checkmark
- Storage energy: 100 GeV/ amu ($\gamma = 107.4$) \checkmark 10 GeV / amu ($\gamma = 10.5$) \checkmark
- Lattice with β^* squeeze during acceleration ramp:
 - β^* = 3 m and 10m @ all IP at injection ✓
 - β^* = 1 m @ 8 and 2 m @ 2, 6 and 10 o'clock at storage \checkmark
- Peak Luminosity: 5×10^{26} cm⁻² s⁻¹ (2.5 × design average) \checkmark
- Bunch length: 5ns (200 Mhz operational, diamond length: $\sigma = 20$ cm) \checkmark

Au Injector Performance (needs update)

Intensity/RHIC bunch		Efficiency
Tandem	$(3.8) \times 10^9$	
Booster Inj.	$(2.2) \times 10^9$	58%
Booster Extr.	$(1.8) \times 10^9$	81%
AGS Inj.	$(0.9) \times 10^9$	50%
AGS Extr.	$1.2(0.9) \times 10^9$	<u>95%</u>
Total		23%

Au³²⁺: 1.1 part. μ A, 530 μ s (40 Booster turns)

RHIC performance

- Collisions at RHIC design beam energy (100 GeV/nucl)
- 200 MHz rf system operational
 - > 5 ns bunch length and an interaction region with $\sigma \sim 25$ cm
- Luminosity exceeding RHIC design luminosity of 2×10^{26} cm⁻² s⁻¹
- 40% availability is limiting total integrated luminosity

"Typical Store" # 1812

Integrated Au-Au luminosity

x 10⁶ Au

RHIC PERFORMANCE

RHIC Au commissioning and challenges

- Single- and multi-bunch instabilities
 - Effect of vacuum chamber impedance, electron cloud (?)
- Intensity limitation for gold (?) due to vacuum break-down
 - Limited to about 40×10^9 Au/ring
 - o Electron cloud? Ion or electron desorbtion?
- Intra-Beam Scattering (IBS)
 - Transverse and longitudinal emittance growth
 - Eventually will need electron cooling (see below)
- Beam-beam tune shift and spread
 - First strong-strong hadron collider (after ISR)

Transverse instabilities in RHIC

Polarized proton collisions in RHIC

High intensity polarized H source

KEK OPPIS upgraded at TRIUMF

70 - 80 % Polarization

15×10¹¹ protons/pulse at source

6×10¹¹ protons/pulse at end of LINAC

Proton polarization at the AGS

- Full spin flip at all imperfection resonances using partial Siberian snake
- Full spin flip at strong intrinsic resonances using rf dipole
- Remaining polarization loss from coupling and weak intrinsic resonances
- Larger polarization loss in FY2002 due to lower ramp-rate motor-generator and higher bunch intensity (?)

First Siberian Snake in RHIC Tunnel

Siberian Snake: 4 superconducting helical dipoles, 4Tesla, 2.4 m long with full 360° twist

Funded by RIKEN, Japan Designed and constructed at BNL

"Typical Store" # 2304

Beam currents [\times 10⁶ ions]

____ Blue Beam Current

Yellow Beam Current

PHOBOS

Luminosity [$\times 10^{30}$ cm⁻² s⁻¹]

PHENIX

Integrated p - p luminosity (numbers wrong?)

STAR during last 25 days: $24 \text{ (nb)}^{-1}/\text{week}$ $L_{\text{ave}}(\text{week}) = 0.4 \times 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$ $L_{\text{ave}}(\text{week})/L_{\text{ave}}(\text{store}) = 4 \%$

Results from first RHIC polarized proton run

- 55 bunches per ring with $0.8 \times 10^{11} \,\mathrm{p}^{\uparrow}/\mathrm{bunch}$
- Charge/bunch and total charge higher than with gold beams
- Lattice with constant β * of 3 m during ramp
- Peak luminosity at beginning of store: 1.5×10^{30} cm⁻² s⁻¹
- Energy/beam: 100 GeV
- Beam polarization ~ 25 %
 RHIC polarimeters work reliably
- Little if any depolarization in RHIC during acceleration and store **Siberian Snakes work**
- $\bullet \sim 60$ % polarization loss in AGS; aggravated by lower ramp-rate from Westinghouse motor-generator
- Strong Siberian snake in AGS (\sim 30 % of full snake) could avoid all depolarization in the AGS

C-A Operation FY20001-02

C-A Operation FY2003-04

RUN2002 Goals

- Prepare for three modes all with:
 - Energy/beam: 100 GeV/nucl., diamond length: σ = 20 cm $L_{ave}(week)/L_{ave}(store) = 40 \%$
- Au-Au: 56 bunches per ring with 1×10^9 Au/bunch, $\beta^* = 1$ m, $\epsilon = 15 40 \text{ m} \mu\text{m}$ $L_{\text{peak}} = 14\times10^{26} \text{cm}^{-2}\text{s}^{-1}; L_{\text{ave}}(\text{store}) = 3\times10^{26} \text{ cm}^{-2}\text{s}^{-1} \ [70 \ (\mu b)^{-1}/\text{week}]$
- •p↑-p↑: 56(112) bunches per ring with 1×10^{11} p↑/bunch , $\beta*=1$ m, $\epsilon=25$ $\pi\mu$ m $L_{peak}=8(16)\times10^{30}$ cm $^{-2}$ s $^{-1}$; $L_{ave}(store)=5(10)\times10^{30}$ cm $^{-2}$ s $^{-1}$ [1.4(2.8)(pb) $^{-1}$ /week] Beam polarization ≥ 50 % Acceleration test to 250 GeV
- •d-Au: 56 bunches per ring with 1×10^9 Au/bunch and 1×10^{11} d/bunch Equal energy, $\beta*=2m$, $\epsilon=20\pi\mu m$ $L_{peak}=5\times10^{28} cm^{-2}s^{-1}; L_{ave}(store)=2\times10^{28} cm^{-2}s^{-1}$ [5 (nb)-1/week]
- New hardware installed and to be commissioned:
 - All eight spin rotators for PHENIX and STAR

